
UCRL-MA- 1479 19

HBTprogs Version 1 .O

D. A. Brown, P. Danielewicz

March 15,2002

US. Department of Energy

Laboratory

Approved for public release; further dissemination unlimited

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the United States
Government or the University of California. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States Government or the University of California, and
shall not be used for advertising or product endorsement purposes.

This work was performed under the auspices of the U. S. Department of Energy by the University of
California, Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48.

HBTprogs
Version 1.0

D.A. Brown', P. Danielewicz'

March 15, 2002

'email:brownl70@llnl.gov, L-414, Livermore National National Laboratory, P. 0. Box 808, Livermore, CA 94550
2email:danielewicz@nscl.msu.edu, Michigan State University, East Lansing, Michigan 48824

mailto:email:brownl70@llnl.gov

Abstract

This is the manual for a collection of programs that can be used to invert angled-averaged (i.e. one dimen-
sional) two-particle correlation functions. This package consists of several programs that generate kernel
matrices (basically the relative wavefunction of the pair, squared), programs that generate test correlation
functions from test sources of various types and the program that actually inverts the data using the kernel
matrix.

Contents

1 INTRODUCTION 3
1.1 BasicTheory . 3

1.1.1 The Koonin-Pratt Equation . 3
1.1.2 The Source Function . 4
1.1.3 Recasting the Problem in Id . 4
1.1.4 Limitations of the Formalism . 4

1.2 Inverting the Koonin-Pratt Equation . 5
1.2.1 Recasting the Equation . 5
1.2.2 A Least-squares Solution . 6
1.2.3 Fourier Theory Considerations . 6
1.2.4 Representing the Source . 6
1.2.5 Optimal Knots for the B-splines . 7
1.2.6 Constraints . 7

2 GETTING STARTED 9
2.1 Obtaining the Source Code . 9
2.2 System Requirements . 9
2.3 Installation . 9

3 AN EXAMPLE RUN 11

4 PREPARING INPUT FILES 13
4.1 Filename conventions . 13
4.2 Correlation data file format . 13

4.2.1 3 Column Format . 13
4.2.2 4 Column Format . 13
4.2.3 Units of relative momentum . 15

4.3 Editable include files . 15
4.4 Main control file . 15

5 IMAGING THE SOURCE 17
5.1 Choosing the knots . 17

5.1.1 General comments about knots . 17
5.1.2 Box-splines . 17
5.1.3 Specific knotmode’s . 18

5.2 Equality Constraints . 19
5.3 Inequality Constraints . 19

1

21
6.1 The pick-kernel script 21

6.3 The rest of the kernels 23

6 BUILDING KERNELS
.

. 6.2 Layout of kernel . dat and genmaNIiD 21

6.3.1 genmaPPiD, for proton pairs . 23
6.3.2 genmaIMFiD, for Intermediate Mass Fragments . 23
6.3.3 genmameson, for meson pairs . 24

.

. 6.4 Using the kernels 24

25
7.1 Running makcolD 25
7.2 How makcolD works 25
7.3 Adding to makcoiD 26
7.4 CRAB and friends 26

28

30

31
A.l MainFiles 31
A.2 The example files 32
A.3 CRAB addons 32

34

38

7 MAKING TEST CORRELATIONS
.

.
.

.

8 FREQUENTLY ASKED QUESTIONS (FAQ)

9 CONCLUSIONS

A FILE MANIFEST
.

.
.

B CHANGELOG

C To Do LIST

2

Chapter 1

INTRODUCTION

This manual outlines the set of programs that we
developed to invert angle-averaged two-particle cor-
relation functions. In the following sections, we will
outline the purpose of the code, how it works, how to
install and run the code, and indicate how to extend
it.

You are free to use the codes in your analysis
provided that you reference either this manual or
references [l, 2, 31 in any publications using results
obtained with these codes. We are not responsible
for any misuse of these codes. Feel free to con-
tact either of us if you have any questions, com-
ments or suggestions. Our emails are David Brown
at brownl’7O@llnl.gov and Pawel Danielewicz at
danielewicz@nscl.msu.edu. If you have bug-fixes
or add new features or kernels t o your version of the
code please contact David Brown, so that we can in-
corporate the changes in future releases.

The outline of this manual is as follows. First, for
the remainder of this chapter we will explain the the-
ory behind the imaging codes. Second, in Chapters 2-
4, we will explain what is needed to run the codes.
This includes explaining how to install and run the
codes (Chap. 2), an example calculation (Chap. 3)
and a description of the input options (Chap. 4).
Next, in Chapters 5-7 we explain more about how to
run the various codes and control scripts. In Chap. 5
we elaborate on the imaging codes, in Chap. 6 we ex-
plain how the kernel generators work, and in Chap. 7
we detail two ways to test the imaging codes. Follow-
ing this, Chap. 8 is a list of Frequently Asked Ques-
tions. Finally, we will conclude in Chap. 9. There
are also three appendices listing various files in the
distribution.

1.1 Basic Theory

1.1.1 The Koonin-Pratt Equation

Our starting point is the ratio of the two particle
spectrum to two uncorrelated single particle spec-
tra, a.k.a. the two particle correlation function, often
measured in heavy-ion reactions:

Here P = p1+ p2 is the total momentum of the pair
and q’ = $(pi -pi) is the relative momentum of the
pair in the pair center of mass (CM) frame (denoted
by the primes).

Extracting the source function for a pair of iden-
tical particles, Sp(r’), begins by noting that Sp(r’) is
related to this experimentally measured two-particle
correlation, Cp(q’) (or Rp(q’), its deviation from l),
through the so-called Koonin-Pratt equation [4, 51 :

Rp(q‘) E Cp(q’) - 1 = dr’K(q‘,r’)Sp(r’).

(1.2)
I

Thus, “imaging the source’’ means somehow inverting
this equation. In (1.2), and the kernel of the integral
equation is

The wavefunction, @(-I, describes the propagation of
the pair from a relative separation of r‘ in the pair
CM to the detector with relative momentum q’. The
source function itself is the probability of emitting
the pair a distance of r’ apart, in the pair CM frame.

3

mailto:brownl�7O@llnl.gov
mailto:danielewicz@nscl.msu.edu

1.1.2 The Source Function

In order to get a better understanding of what the
source function is, consider the emission function
D(r,p). The emission function is the probability of
emitting a single particle at space-time point T with
momentum p. We may write it in terms of the par-
ticle emission rates:

This is actually not a true probability as it is a Wigner
function, however we may identify the emission rates
with the freeze-out distributions in a transport code.
In fact, this is what is done in Scott Pratt’s CRAB
code [6].

Next, we may define the relative distance distri-
bution, d(r, P/2) , in terms of the emission function:

d(r , P/2) = d4R D(R + r/2, P /2)D(R - ~ / 2 , P/2)

The relative distance distribution is the probability of
emitting a pair with a space-time separation T . Each
particle has approximately momentum P / 2 (in the
smoothness approximation, the slight difference be-
tween using p1, p1 and P / 2 is ignored). In order
t o write down Eq. (1.5), we need to assume the each
particle comprising the pair is independently emit-
ted. This “chaoticity” assumption is not needed for
the imaging to work, but is needed in order to make
contact with semi-classical transport models.

Finally, we may define the source function. To
do this, we boost to the pair CM frame (noting that
P‘/2 = 0 in this frame) and integrate out the CM
time:

(1.5)
s

Sp(r’) = drb & (T I , 0). (1.6) s
This time integral is a reflection of the fact that the
squared wavefunction of the pair is independent of
the relative emission time in the pair CM. This time
integral does have dramatic consequences, for exam-
ple we can not distinguish between the two scenarios
pictured in Fig. 1.1. As a final comment, the source
function is normalized:

This is simply a statement of conservation of proba-
bility.

1.1.3

A one dimensional correlation function is usually tab-
ulated as a function of qinv = ,/-/2. For-
tunately, the Oth component of the relative momen-
tum vanishes in the pair CM frame for identical par-
ticles giving qinv = Iq‘l = q. Thus, we may angle
average the 3d Koonin-Pratt equation to obtain the
same equation for Id correlations. We will now illus-
trate this.

First, expand the full 3d source and correlation in
spherical harmonics, giving

Recasting the Problem in Id

e=o m=-e

and
e

e=o m=-t
C(q> = ctm(q)Yem(G) (1.9)

From here onward, we will suppress the P subscript
in all quantities. The Oth term in both expansions
is the angle average of the respective function. Note
that the kernel only depends on lql,lrl, and y (the
angle between q and r) [l]. This allows us to expand
the kernel in Legendre polynomials:

00

K(q, r) = E (2 h + 1)Kx(q, r) ~ ~ (c o s y) (1.10)

With this, the integrals can easily be done with
the aid of the spherical harmonic addition theorem.
In the end, we find

X=O

00

R(4) = C(q) - 1 = 4.1 drr2Ko(q,r)S(r). (1.11)

and this is the equation we will image. Here, the
angle-averaged kernel is

KO(4,r) = /d(cosy) (10&-)(r)12 - 1) . (1.12)

The explicit expressions of the angle-averaged kernels
for each pair type are shown in Chap. 6.

1.1.4 Limitations of the Formalism
There are several limitations of the Koonin-Pratt for-
malism that may affect either the imaging results or
the interpretation of the resulting images. Unfortu-
nately, these issues have not been fully mapped out,
so at best we can refer you to the literature if you
need more information:

4

I
\ J

Figure 1.1: Two emission scenarios that give the same separation of emission points. On the left, the pair is
emitted simultaneously with a relative separation r. On the right, the first particle is emitted with a relative
velocity v and the second particle is emitted At later a distance of ro from the first particle. The combined
spatio-temporal separation of emission is r = ro + vAt, giving a separation identical to that in the scenario
on the left.

1.

2.

3.

4.

5 .

Third body Coulomb effects [7, 81.

Position-momentum correlations (eg. flow,
opacity, etc.) [9].

Three(and higher) body quantum statistical ef-
fects [lo, 11, 12, 131.

Smoothness approximations [14, 15, 161.

“Chaoticity,” in other words, the independent
emission hypothesis [17].

Also, there are several review articles that may prove
helpful [18, 19, 201.

1.2 Inverting the Koonin-Pratt
Equation

In this section, we describe the mathematical consid-
erations behind our inversion code. Although we will
transform the inversion of the Koonin-Pratt equation
to a simple linear matrix inversion problem, there are
several factors that will complicate our work. First,
our the data contains both noise and uncertainty.
Both must be dealt with using a least-square ap-
proach to the inversion. Since the kernel is the pair
wavefunction squared, it is basically a distorted sine
function. The distortion arises from the pair interac-
tion potential. The similarity of our integral trans-
form to a Fourier Transform problem means that we
must pay attention to sampling issues. In particu-
lar, we must be careful in choosing our representa-
tion of the source. We will use Basis splines (a.k.a.
b-splines) to represent our source because we can ad-
just the knots of the b-splines in order to optimize

the resolution. Finally, since this inversion problem
is ill-posed, we will use constraints to help stabilize
the inversion. All of this is discussed in Ref. [3] in
more detail.

1.2.1 Recasting the Equation

In our calculations, we expand the imaged source in
a function basis:

N M

S(T) = SiBi(.). (1.13)
i=l

Here Si are the N M source coefficients of the source
with the basis functions Bi(r) . In this basis, the error
on S (r) is given by

(1.14)

where A2Sij is the covariance matrix of source coef-
ficients determined during the inversion process.

The experimental data is also binned (with the
number of bins being N D) and therefore we must
also average the kernel over these bins. Our inver-
sion problem then reduces to the following equation:

N M
Ri 5 R(qi) = KijSj, (1.15)

j=1

or in matrix notation:

(1.16)

5

Here, the kernel matrix is

4n / q i + * R i l Z d q /m
K . . - - dr r2 K (4 , r)Bj (r) .
” - Aq q; -Aq .12

(1.17)
We call the center of the ith bin qi and the width
of the ith bin is Aqi. Our source vector is made of
the Sj coefficients of the basis function representation
of the source and our data vector is made of the Ri
correlation values.

1.2.2 A Least-squares Solution
Once we have chosen a representation of the source
and converted the inversion problem into the matrix
inversion of Eq. (1.16), we proceed as in Refs. [l, 21
and extract the source. To obtain the coefficients of
the source, we seek the source that minimizes the x2:

x 2 = (K . S - Robs)T. (A2R)-l . (K . S -Robs) (1.18)

Here Robs is the vector of data values and A 2 R is
the full data covariance matrix. Typically A2R is
assumed to be diagonal, although it need not be.

The source that minimizes the x 2 is:
S = A 2 S . KT . (A2R)-I .Robs

A z s = (K T . (A2R)- l . K)-l

(1.19)

(1.20)

The covariance matrix of this source is:

When we image, we are really finding a probabil-
ity density for the source given the correlation data
rather than the source itself. The set of source coef-
ficients and the covariance matrix of the source char-
acterize the height and width of this probability dis-
tribution. In the end, we use the source coefficients
as an estimator of the true source.

1.2.3 Fourier Theory Considerations
Although we have a solution to the imaging prob-
lem in Eqs. (1.19) and (1.20), the solution is in-
complete with out specifying the basis of the source.
Given that the identical particle kernels in Eq. (1.2)
or (1.11) are Fourier transform kernels a t large dis-
tances, we expect our transforms to behave like
Fourier transforms. Thus, if we expand the source
in box-splines, i.e. discretize it, then Eq. (1.16) is
nearly a finite Fourier transform. In this case, the
Sampling Theorem says that the binning in q and r
spaces are related:

hC?T hC7T
(1.21) Ar = - and Aq = -.

qmax rmax

Here qmax = NAq, r,,, = N A r and N M = N o E N
is the number of bins in both the r and q spaces.

Using these relations, we may get a feeling for how
structures in the data affect the imaged source. For
example, the low-q structure in the data sets the large
length scale behavior of the source. Conversely, the
high-q portion of the data sets the short length scale
behavior of the source and therefore sets the size of
the smallest features features we could hope to re-
solve in the source. For example, if the correlation
dies off around a q x 80 MeV/c, then we should not
expect to resolve structure smaller than Ar x 8 fm.
Owing to the fact that our kernel is not a trigonomet-
ric function in general, these estimates are qualitative
at best.

1.2.4 Representing the Source

Rather than use the simple box-spline basis, we
choose to represent the source function in a Basis
spline (a.k.a. b-spline) basis. Several b-splines are
pictured in Fig. 1.2. B-splines are piecewise poly-
nomials and are continuous up to the degree of these
polynomials. This basis has many features that make
it ideal for the imaging problem:

It can efficiently encode complicated functions.

Basis functions can be evaluated quickly.

The degree of continuity of the b-splines can be
adjusted in several ways.

Natural generalization of the box-spline basis
as the Oth order b-spline is the box-spline.

By varying the knots (basically the “edge of a
bin” of a box-spline) we can change the resolu-
tion of the b-splines.

For details on b-splines, see Ref. [21] and for detail on
how we use it in the inversion problem, see Ref. [3].
The actual implementation that we use is CERN-
LIB’S NORBAS package, E210 [22].

In the b-spline basis, the concept of the “edge of a
bin” in the box-spline basis is replaced with the con-
cept of a knot. A knot is simply the place where the
polynomials that make up the b-spline are patched
together. In the “optimized discretization” scheme
of Ref. [2], the edges of the box-splines are varied to
minimize the relative error of the source. We may
generalize this idea to the b-splines easily by varying
the locations of the knots.

6

I I I I I I I
0 2 4 6

r

Figure 1.2: Sample plots of Nkh degree b-splines. In all panels, the knots are marked by carets and the knots
a t r = 0 are actually N B + 1 regular knots piled together.

1.2.5 Optimal Knots for the B-splines

Since the kernel is not truly a Fourier Transform, we
must ask whether the finite sized binning implied by
Fourier theory is optimal. Also owing to various ex-
perimental effects, we may be insensitive to various
regions in T space and may wish to lower the resolu-
tion in these places. To deal with these two problems,
we use the generalization the “optimized discretiza-
tion” scheme of Ref. [2] detailed in Ref. [3] .

First, we notice that the model covariance matrix
of Eq. (1.20) depends on the kernel of the inversion,
the error on the data and whatever scheme we use to
represent the source, but not on the correlation data
or the source itself. For a given kernel and set of data
errors, we are free to change our representation of the
source in order t o minimize the error of the source.
In particular, we may vary the location of the knots
(at least not the knots fixed at the endpoints of the
imaging region) to minimize the error of the source,
ASj = ,/=, relative to some dummy source:

(1.22)

The coefficients Sjlummy are the expansion of a
dummy source in b-splines. In this minimization,
the first and last multiple knots are held fixed and
the positions of all of the other knots are varied.
The dummy source itself is chosen to be big roughly
where one expects the source to be big and small
where one expects the source to be small. Since the
details of the dummy source are not important] we
choose a dummy source to be an exponential with
radius RduTnmy = 3.5 fm given by Sdurnrny(r) cc
exp (-r/Rdummy).

1.2.6 Constraints
In order to further stabilize the inversion, we can take
advantage of prior information in the form of con-
straints, as first suggested by Tikhonov [23]. Here we
focus on equality constraints. An equality constraint
is a condition on the vector of source coefficients that
has the generic form C . S = c . One example of such a
constraint is that the source has slope 0 at the origin,
in which case we write

N.9

S’(r + 0) = SiBi(r -+ 01 = 0. (1.23)
i= 1

7

Other useful constraints are detailed in Section 5.2.

just adding a penalty term to the x2:
We can implement these types of constraints by

x 2 + X(C . s - c)2 (1.24)

Here the X is a trade-off parameter and we may vary
it in order to emphasize stability in the inversion
(by making X huge) or to emphasize goodness-of-fit
(by setting X to zero). Such an ability to trade-off
stability for goodness-of-fit is discussed in Numerical
Recipes [24] in detail. With this modification of the
x 2 , the imaged source is

S = A2S. (K T . (A2R)-l . Robs + ACT . C) (1.25)

and the covariance matrix of source now is

A2S = (K T . (A2’??,)-’ . K + ACT .e)-’. (1.26)

This technique may be justified using Bayes Theorem
as explained in Refs [3, 251.

As an alternative to this approach, constraints
may be implemented exactly using the Householder
Reduction of a matrix composed of the constraints
and the inversion kernel together. Such a scheme is
explained in more detail in Numerical Recipes [24]
as well as in CERNLIB’s documentation for the TL
package, no. E230 [22].

Inequality constraints may also be used to sta-
bilize the inversion. Unfortunately, implementing
them in the code requires the use of so-call “Active
set” methods, which are beyond our current ability.
Nonetheless, we do check to see how well inequality
constraints are obeyed by the images.

8

Chapter 2

GETTING STARTED

2.1 Obtaining the Source Code A text editor

To obtain the source codes for these programs, you
can contact either one of the authors, Dave Brown
(at brownl70@llnl.gov) or Pawel Danielewicz versions seem to work).
(at danielewicz@nscl.msu.edu), or download
the codes from LLNL’s Theory and Modeling a FORTRAN compiler
Group web-page at http: //www-phys . llnl . edu/
Organization/NDivision/ntm/HBTprogs.html.
The codes are distributed as a Unix tarball A c++ if You want to use
(HBTprogs .tar. gz) or a zipfile (HBTprogs. zip).

CERNLIB libraries (the 1997a, 1999, and 2000

mtx2xpm. cpp or the CRAB add-on programs

2.2 System Requirements e CRAB, for the CRAB add-on programs

We have test the codes on several different systems:

e RedHat Linux 7.1 using g77 v0.5.26 from Gnu 2.3 Installation
Compiler Collection, gcc v2.96-85.

Compaq Tru64 using f90 and f77, the Compaq The installation is fairly simple under Unix:
Fortran Compiler V5.4A-1472-46B2F.

It probably works on many other systems, so if you ’. Set the environment CERNLIB to
get it to work on another system, please let us know the path to the CERNLIB library files
and we’ll add it t o this list.

need several other things:

libpacklib. a and libmathlib. a
In addition to the Fortran compiler, you will also

tar and gzip to unpack the tarball

l3w and/or a postscript viewer to read the

2. Unpack the tarball:

% gzip -d HBTprogs-v1.O.tar.gz
manual. % tar xvf HBTprogs-vl.0.tar

e make to build the programs

e sh t o run the shell scripts

GNU autotools for some of the build features in
the configure script (autoconf version 2.52f
and automake version 1.5 were used to build
this script).

3. Go to the HBTprogs-vl . 0 directory

% cd HBTprogs-vl.0

9

4. Run the configure script:

% ./configure
loading cache ./config.cache
checking for a BSD compatible install ... (cached) /usr/bin/install -c
checking whether build environment is sane... yes
checking whether make sets ${MAKE) . . . (cached) yes
checking for working aclocal . . . found
checking for working autoconf ... found
checking for working automake . . . found

creating src/Makef ile
creating src/kernel-generators/Makefile
creating src/ld/Makef ile
creating doc/Makefile

. . .

5 . Help may be obtained by typing “configure -help”

6 . Make the manual, library, etc.

% make install-data
Making install-data in lib
makeC11: Entering directory ‘/home/dbrown/Projects/Interferometry/HBTprogs-vl.O/lib’
make[l] : Nothing to be done for ‘install-data’ .
makeC11: Leaving directory ‘/home/dbrown/Projects/Interferometry/HBTprogs-vl.O/lib’
Making install-data in src
makeC11: Entering directory ‘/home/dbrown/Projects/Interferometry/HBTprogs-vl.O/src’
Making install-data in kernel-generators
rnakeL21: Entering directory ‘/home/dbrown/Projects/Interferometry/HBTprogs-vi.O/src/J
/bin/sh ../../config/mkinstalldirs ../../kernels
/usr/bin/install -c genmaNIlD ../../kernels/genmaNIlD
/usr/bin/install -c genmaPPlD ../../kernels/genmaPPlD
/usr/bin/install -c genmaIMFlD ../../kernels/genmaIMFlD
/usr/bin/install -c genmaKKlD ../../kernels/genmaKKlD
/usr/bin/install -c genmaPIlD ../../kernels/genmaPIlD

. . .

That’s it!

10

Chapter 3

AN EXAMPLE RUN

In this section, we describe how to run the codes.
Since it is easiest to image if you use the imageit
script, we will concentrate on using it. We begin by
performing the example imaging calculation in the
the doc/example/ directory and a detailed descrip-
tion of the imageit script is contained in Chap. 5.

This example is a simple one in that we will
start with the proton correlation contained in
example-pp. corin, corresponding to the Gaussian
source function in example-pp. souin. This Gaus-
sian has X = 1 and R = 5 fm.

6 .

1. If you already have not done so, move to the
doc/example/ subdirectory.

2. Copy the imageit script from the sbin/ direc-
tory and change its permissions so that it is
executable.

3. We need to figure out how many points
to use the reconstruction, so view the
example-pp. corin file and count the number
of bins where C(q) # 1. In this example, there
should be 15 bins.

4. Now edit example-pp. dimensions. First,
change Ndata (this value is ND in the equations
in the text) to correspond to the total number
of data points in example-pp. corin. Second,
change Nmodel to be some number smaller than
the number of bins you found in the previous
step (Nmodel is N M , the number of source co-
efficients in the text). Nmodel= 8 bins should
work .

5. Edit example-pp . bsplines and set the
order of the b-splines, BSplineDegree.
BSplineDegree= 3 should work.

For the last bit or preparation, edit the
example. controls. We have several things to
edit here. As you can see from the file, the
controls are separated into a set of six differ-
ent FORTRAN namelists. We will divide our
explanation into these six parts.

(a) The dataformat namelist: these controls
describe the format of example-pp. corin.
Since there are only three columns in
the file, set xydxdy=.false. and set

iince the data is already in GeV/c, set
energyfactor=l .do.

(b) The knot-controls namelist: these con-
trols effect how the knots are chosen and
displayed. They are described in detail
later. For now, set showlmots= . false.,
save_knots=. true., and knotmode=l.

(c) The f it-controls namelist: these
control the various fitting controls.
For simplicity, set all constraints to
.false., turning them off. Set the
fit limits to be lowfit-lim=O.dO and
u p f it_lim=45. do. Since we have turned
off all constraints, the tradeoff parame-
ter is irrelevant.

(d) The norm-constr aint -controls
namelist: these controls are for the nor-
malization constraint. Since we turned it
off, this section does nothing.

(e) The display-controls namelist: these
controls determine what is information is
outputted from the inversion. The image
file, coefficient file and covariance matrix
file are always created, so for simplicity

11

Figure 3.1: Results of the example calculation. The input model correlation and source are shown in black
and the restored source and correlation are shown in red. The restored source is represented as an error
band. The two lower panels show the source on both a linear and log scale.

set all the options to . f a l s e . . You may
set up-int-lim to any positive number less
than u p f i t - l i m . The code will integrate
the imaged source up to that value.

(f) The special-3Dxontrols namelist:
these controls are specifically for the 3d
inversion code that is still in development.

Invoke 7. Now we are ready to run the code.
image it :

1 . / imageit example pp s c r a t c h

Here, s c ra t ch is a directory for the codes to
use to store temporary files.

8. That's it!

In the doc/example/ directory, you should
find several new files. The most important ones
are the files example-pp . coef f s, which contains
the coefficients of the b-spline expansion of the
source, example-pp. covmtx, which contains the co-
variance matrix of the imaged coefficients, and
example-pp. k n o t l i s t , which contains the knots
characterizing the b-spline expansion. Unfortu-
nately, none of these files gives you a simple view
of the source. For that, you should plot the
exampleqp. imag which is the source tabulated as
S(T) vs. T . These results are plotted in Fig. 3.1.

12

Chapter 4

PREPARING INPUT FILES

This chapter details the various input files needed for
the codes. We begin with a discussion of the file-
naming conventions. Next, we explain the format for
the correlation data. Following this, we describe the
FORTRAN include files that specify the array sizes.
Finally, we list and explain all of the options in the
main control file.

4.1 Filename conventions
There are many input files for the imaging codes, and
there are even more output files. This is a reflection
of our use of FORTRAN as well as our programming
ability. Ideally we would like all inputs to be in one
big file, with clean syntax. Since the user must be
able to change array sizes and FORTRAN lacks dy-
namic memory allocation, every time the one big file
is changed, the user would need to recompile the code.
Since other information can be loaded after compila-
tion, we instead use a few different files.

The file names for these files are hard-coded into
the codes. Since the management of these files can
be somewhat complicated, we wrote a few scripts to
rename the files to/from these hard-coded names to

the input format that the codes can use and here we
will quickly outline them. You may use either 3 or
4 columns to input the correlation (controlled by the
xydxdy flag in yourf ile . controls file. Additionally,
you have nearly complete control over the input units
for the relative momentum. In all cases, we assume
that the center of the i th bin is qi and the width of
i th the bin is Aqi (so that the ith bin extends from
qi - Aqi/2 to qi + Aqi/2).

4.2.1 3 Column Format
The 3 column format contains, oddly enough, 3
columns of real numbers. The first column is the q
of the bin, the second column is the correlation func-
tion itself, and the final column is the error on the
correlation function. If you use this format, the code
will assume that all of the Aqi’s are equal.

As an example, the sample yourf ile. corin file
look like:

4.000 0.3413868 4.1696317E-02
6.000 0.5828804 3.9426915E-02
8.000 0.7180706 3.0471841E-02

. . .

The Fortran statement that reads this file is more reasonable names. The scheme we chose is sim-
ple: all files in a run have the same prefix and differ-
ent extensions, e.g. yourf ile.extension. A listing
of all of the extensions is shown in Table 4.1 The map-
ping of user filenames to working filenames is shown
in Table 4.2. There is a similar naming convention
for the makcolD code and this is discussed in Chap. 7.

READ(~O,*)Q(ISQ) ,C(ISQ) ,dC(ISQ)

Note that the momentum here is specified in units of
MeV/c, although nearly any units are acceptable.

w e ommen mend that YOU use this option if Your
bins all have the same width.

4.2 Correlation data file format 4.2.2 Column Format

The correlation function data should be placed in the
file yourf ile. corin. There are a few variations on

The 4 column format adds a column corresponding
to dq = Aq/2, the error on the momentum (in other

13

extension
. bsplines
.controls
. corin

.dimensions
.knots*

file description
FORTRAN include file that specifies the order of the b-spline expansion.
Main control file.
Correlation data.
FORTRAN include file that specifies various array sizes.
List of knots (needed if knotmode=4).

. comtx
. imag

. knot log
. knots
. optres
.restored

extension
. coef f s

Covariance matrix of the source coefficients.
A table of S(T) vs. T suitable for plotting.
Log file from the knot determination (if knotmode=3).
List of knots used for the b-splines.
Resolution matrix. This is not explained in the text.
The inverted-then-uninverted correlation for use as a cross check.

file description
Final coefficients of the source after fitting.

L
*used only for knotmode=4, see section 5.1 for more detail on choosing the knots

Table 4.1: List of the file extensions used by the imageit script.

starting name
yourfile.corin

yourfile.dimensions
yourfile.bsplines
yourfile.controls
yourfile.knots

working name
corinput.dat

dimensions1D.inc
bsplines1D.inc
main.controls
knotlist. dat

OutDut Files

source-imag.dat
source-coeffs.dat
source-covmtx.dat

knot li st . dat
makeknots.log
c2model. dat
optresmtx .dat

I working name I ending name I
yourf ile . imag
yourfile.coeffs
yourfile.covmtx
yourfile.knots
yourfi1e.knotlog
yourf ile .restored
yourfile.optres

Table 4.2: Mapping of starting filenames to working filenames and back to ending filenames.

14

words, the $-width of each bin). This column is
added before the error on the correlation column.
The above sample file would then be:

choose how many equality constraints you think you
might use and call that Nusedcons. With these, a
starting guess for Nmodel is:

4.000 0.3413868 2.000 4.1696317E-02
6.000 0.5828804 2.000 3.9426915E-02

Nmodel M Ninterestingf Nusedcons (4.1)

8.000 o*7180706 2*ooo 3*0471841E-02 Chapter 5 and Ref. [3] discuss other ways of setting
this variable. The last variable Neqcon sets the max-
imum number of constraints in the code. This should
not be changed unless you plan on adding more equal-

. . .
The Fortran statement that reads this file is

READ(30 2 *> 4 (IS4) ,C (ISQ) ,dQ (IS41 ,dC(IS4) ity constraints.

If your bins do not all have the same size, you
must use this f o r m a t to specify the bin widths.

4.2.3 Units of relative momentum
The q that is entered in the table may be in
a n y units and it may correspond to qinv =
d-12 (bigQ=.false.) or Qinv =
d- (bigQ=.true .). Whatever units you
choose, you must specify how to convert your choice
of units to our choice of units in yourf ile. controls.
How exactly you are to do this is specified in the
section on the yourf ile. controls file, but basically
you must specify the units conversion factor and say
whether you will use qinv or Qinu. In any event, in-
side the codes we work in GeV/c and our default q
is qinv for both all particle pairs (including mesons
where one traditionally uses Qinv).

4.3 Editable include files
Files yourf ile. bsplines and yourf ile .dimensions
are files that get included by makcolD and
imagelD when they are compiled. Setting up
yourf ile. bsplines is easy. Once you have chosen
what order b-splines you want to use (0 for box-
splines, 1 for hat functions, ...), simply change the
line

parameter (BSplineDegree=3)

to reflect that order.

tle more thought. Here the line to edit is
Setting up yourf ile .dimensions may take a lit-

parameter (Ndata=83,Nmodel=6,Neqcon=5)

First, set Ndata equal to the number of bins in your
data file. Choosing Nmodel is a little more difficult.
To get a rough guess, count up the number of data
points in you correlation that look like they are dif-
ferent from 1. Let’s call this Ninteresting. Now

4.4 Main control file
The main control file is yourf ile . controls, which
consists of a series of FORTRAN namelists. Each
namelist corresponds to a specific set of options and
here we detail each namelist separately.

The dataformat Namelist. This namelist
contains the options that specify the for-
mat of your input correlation function,
yourf ile . corin. The options are:

xydxdy: This sets whether the data file
has either a four column format,

.true.), or a three column for-
mat, %. qi, c(qi), dC(qi) (xydxdy =
. false .) .

e.g. Qi7 C(qi) ,dqi , dC(qi) (xydxdy =

big@ This sets whether q corresponds to
Qinv = J-/2 (big4 =
. false .) or to Qinv = J- (pl - pz)2

(big4 = .true.).

energyfactor: This tells the codes how to
rescale the q’s in yourf ile. corin
get rescaled to bring them to units
of GeV/c (the internal format of
all of the codes). For exam-
ple, if your data is in MeV, then
energyfactor=ld.-3

0 The knot-controls Namelist. These options
tell the imaging code what t o do with the knots.

showknots: This tells imagelD to print the

saveknots: This tells imagelD whether
to save the knot list to the file
knotlist. dat.

knot list to the screen.

15

knotmode: This option tells imagelD which
method to use to chose the knots. The
options are descibed in detail in Sec-
tion 5.1.

T h e f i t -controls Namelist. These options
control the actual imaging of the source.

lowfi t - l im: This option sets the lower bound
of the region in T that you want to re-
construct the source over.

u p f i t - l i m : This option sets the upper bound
of the imaging region.

t radeoff : If tradeoff is positive, it is the
trade-off parameter X in Eq. (1.24).
It should be chosen so that the con-
straint term in the modified x2 is
larger than the data term. Accord-
ing to Ref. [3], a good choice is to pick
tradeof f >> (Ndata+Nmodel+l) x lo6
If tradeoff is negative, this signals
to imagelD to use a Householder re-
duction to satisfy the constraints ex-
actly. One should note however that
it may not be possible to both satisfy
the constraints exactly and obtain a
reasonable image.

d i f f -constraint: This option tells imagelD
whether to use the S’(r + 0) = 0 con-
straint.

norm-constraint: This option tells imagelD
whether to constrain the integral of
the source. See below for more options
for this constraint. (Note: this con-
straint does not work as of 8/8/2000,
DAB).

z e r o s our c e a t -1 a r g e r : This option tells
imagelD whether to force S(T) = 0
when T =upf i t - l im.

smoothsource-at-larger: This option tells
imagelD whether to force S’(T) =
0 when r = u p f i t l i m -5 fm.
This has the effect of smooth-
ing the source at large distances.
This option sometimes has no ef-
fect when used in conjunction with
z e r o s o u r c e a t - l a r g e i .

T h e norm-constraint-controls Namelist.
This namelist contains more fine-grained con-

trol over the normalization constraint. (Note:
these options do not work as of 8/8/2000, DAB)

norm: This sets what value you want the
norm of the source constrained to.
The default is norm = 1 .do.

norm-intlim: This sets the upper limit of the
integral used to determine the normal-
ization of the source.

The display-controls Namelist.

show-source: This option tells imagelD
whether to write the imaged source
out t o the screen. It is always written
to the file source-imag.dat.

show-coef f s: This option tells imagelD
whether to write the source coeffi-
cients t o the screen. It is always writ-
ten to the file source-coef f s . dat .

show-corr: This option tells imagelD whether
to uninvert the source to obtain a
correlation that may be compared to
your input correlation. The results are
written to the screen and to the file
c2model. dat .

up-intl im: imagelD always integrates the
source and outputs the results. The
upper limit of this integration is
up-int -1 im.

checkne-constraints: This option tells
imagelD whether to check if the im-
aged source obeys the inequality con-
straints and then outputs the results.

showresmtx: This is an undocumented fea-
ture.

showkernel: This option tells imagelD
whether to write the kernel it used
to invert the correlation to the screen.

The special-3D-controls Namelist. This
namelist contains the set of options specific to
the three dimensional inversion code which is
currently in development. Thus, we do not dis-
cuss it at this time.

For more information on setting these files, see
Chapter 5 on imaging or the FAQ (Chapter 8).

16

Chapter 5

IMAGING THE SOURCE

This chapter details how to use the imagelD code
and the wrapper script imageit to invert correlation
data. To invoke imageit, type

$. /imageit [prefix] [PID] [scratchdir]

The [prefix] argument of imageit is the prefix of
your correlation function. The [PID] argument is
the particle type. Valid types are shown in Table 6.1.
The [scratchdir] argument is an optional directory
to store the temporary files.

While the imageit script simplifies the running of
the imaging code, t o use the code effectively you must
understand the various options. Most are adequately
explained in Chap. 4. Here we focus on choosing the
knots, the use of equality constraints and checking
whether inequality constraints are obeyed.

5.1 Choosing the knots
The knots are the matching points of the polynomi-
als comprising the b-splines. Because the width of
the b-splines set the resolution of the image, picking
good knots is crucial. Unfortunately, choosing the
knots is not always straightforward. In this section,
we will explain how to choose the knots and explain
the various things you may do to influence the loca-
tion of the knots. The most obvious way to set the
knots is by picking a knotmode. Table 5.1 lists the
various knotmode’s available to you. While Table 5.1
may be enough information to use the code, there are
many subtle points that we must elaborate on in this
section.

The outline of this section is as follows. First,
we discuss some general issues with our knot choices.
Second, we detail the special case of box-splines,
where the knots are actually the edges of the bins

of the histogram that the box-splines represent. Fi-
nally, we detail the individual knot modes that you
may choose from. If you would like more detail on
the topic of choosing the knots, you should probably
read Refs. [3, 211.

5.1.1 General comments about knots

In this subsection, we briefly describe how we deter-
mine the number of knots in an expansion and how
we fix the first and last few knots.

The knots form an ordered list, {t i} , of NK
values on the interval [lowfi t - l im, u p f i t - l i m] :
l o w f i t - l i m 5 tl 5 t 2 5 ... 5 t N K 5 up-fit-lim.
The number of knots is N x = N M + NB + 1, where
NM is the number of source coefficients (Nmodel in
the code) and N B is the degree of the spline repre-
sentation (BSplineDegree in the code).

Since we do not know the behavior of the source
at large T and we truncate the source long before it
completely goes to 0, we do not make any continu-
ity assumptions at u p f i t - l i m . We do know that
the source should go to a maximum at T = 0 fm,
however the peak at the origin may be too sharp to
resolve. Thus, we can not always make continuity as-
sumptions here either. In the end, we must leave the
control of the continuity of the source at the edges of
the fit region to the user. In order to remove any as-
sumptions about the degree of continuity at the edges
of the fit interval, we fix both the first and last NB + 1
knots at their respective fit interval edge.

5.1.2 Box-splines

In this subsection, we describe the special case
of the box-spline. This is the case where the
BSplineDegree=O and is more commonly called box-

17

knotmode
1

2

makeknots2 I 3 l

routine used description notes
CERNLIB’s DSPKNl fixed spaced knots

CERNLIB,s D S P I N ~

set knots to collocation points
for Schoenberg’s variation dimin-
ishing approximation

this option overrides u p f i t - l i m

this option requires C E R W S

“optimal knots”

4

minuit, so may not function on
some linux machines

n l a user SuDDlied reauires k n o t l i s t . dat

Table 5.1: Various settings for knotmode. All of the CERNLIB routines are detailed in the CERNLIB
documentation [22].

splines. This case must be describe separately as it
has several properties that you must be aware of when
using them. We define box-splines here and comment
on their continuity properties.

For a given list of knots {t i} , the i th box-spline is

B~(.) = e(. - ti) - e(T - ti+l) . (5.1)
Thus, the knots that define the b-splines in this case
are just the edges of the bins of the box-splines. Ex-
panding a function in terms of box-splines results in
a histogramed representation of the function. Some
box-splines are pictured in Fig. 1.2(c).

A function expanded in the box-spline basis
clearly has discontinuities a t all bin boundaries. Thus
when we use this basis to represent the source, we are
making no assumptions about the degree of continu-
ity of the source. In fact, setting BSplineDegree=O
deactivates all constraints on the source that deal
with its continuity.

5.1.3 Specific knotmode’s

We now detail the various knotmode’s. For
most practical purposes, the equally spaced knots
(knotmode=l) should be good enough, however we
provide other options for more control over the knot
placement.

Equally spaced knots

This is the simplest knot choice and the best option
for following the Fourier theory recommendations in
Sect. 1.2.3. In practice, we have found this option to
be a good default choice. Under this option, the first
and last BSplineDegree+l knots are fixed at the fit
region limits. The remainder of the knots are equally
spaced between these end knots.

Schoenberg’s Variation Diminishing Spline
knots

Schoenberg’s Variation Diminishing Spline Approx-
imation is a scheme for approximating a function
using b-splines. The goal of the approximation is
to minimize the difference between the b-spline ap-
proximation and the true function in a least-square
sense [21, 221. In order to make the approximation
work, special knots must be chosen. We do not use
this approximation, but we were interested in exper-
imenting with the knot choice used in this approxi-
mation.

In this approximation, the knots are built off a
list of control points, {xi}, via

The control points are chosen such that the first and
last control points are set to the end of the fit region
and the rest of the control points are equally spaced
between them. Unfortunately, Eq. 5.2 is not uniquely
invertible. Ref [21] offers a prescription that is used in
CERNLIB. This prescription is basically an iterative
method that results in knots {t i} that approximately
satisfy Eq. (5.2).

Optimal knots

This option is already adequately explained in
Sect. 1.2.5.

18

Do-it Yourself Knots

This option is somewhat of a last resort for when
no other knotmode seems to work. To use this, it
is probably best to start with a yourf i l e .knots file
generated using one of the other options. To generate
a valid (although not necessarily good) knot list, you
must do the following:

There should be Nmodel+BSplineDegree+l
knots.

0 The first BSplineDegree+l knots should
be fixed to l o w f i t - l i m and the last
BSplineDegree+l knots should be fixed to
u p f i t l i m .

0 The knots must be monotonically increasing.

While we use this option rarely, we have found cases
where noticeable improvements in the final x2 may
be found by moving the knots just a little bit.

5.2 Equality Constraints
As we have explained earlier, an equality constraint
is a condition on the source that can be written
C . S = c . There are several constraints that we
find useful and they are summarized in Table 5.2.
They each arise from known physics of the two parti-
cle source, and they each serve a mathematical pur-
pose. In Table 5.3, we also list the equations of the
constraints and their b-spline representation.

The degree to which the constraints are obeyed
is set by the t radeoff parameter. This parame-
ter is the X parameter mentioned in Eq. (1.24). If
tradeof f < 0, this signals the code to use the House-
holder reduction to exactly obey the equality con-
straint. This is often a good choice, but it may hap-
pen that your source (or your representation of the
source) is incompatible with the constraints. This
sometimes happens with very narrow sources when
using the d i f f -cons t ra in t option. If tradeof f > 0,

this signals the code to function as described in
(1.25). The limit where t radeoff = X + 00 exactly
reduces to the Householder reduction case.

As a final comment to using equality constraints,
we mention that you should consider increasing the
number of source coefficients so as to avoid overcon-
straining the system and producing garbage. The
rule of thumb we have found has been stated already
in Eq. (4.1).

5.3 Inequality Constraints
As we have mentioned earlier, an inequality con-
straint is a constraint on the source of the form
C . S 2 c . We have not implemented inequality con-
straints in the inversion. However, we do check to see
if any are violated.

We check the following inequality constraints for
compliance:

p o s i t i v i t y : Since the source is a convolution of two
quantum mechanical Wigner functions, it is
possible that it could go < 0. However, clas-
sically, the phase space density is positive
definite, so the source must also be 5 0. In
our experience, a negative source indicates
a problem with the imaging.

FT t e s t : If the independent source hypothesis is cor-
rect, then according to Ref. [16] the Fourier
transform of the source must be positive de-
finate. Sources that fail this test also tend
to have problems with the imaging.

normalization: Conservation of probability implies
that the integral of the source over all T

should yield 1. However, if one truncates
the integral at say u p f i t - l i m , then the in-
tegral should be < 1. This can help diagnose
wild fluctuations in the imaged source.

A list of these inequality constraints, along with their
b-spline representations, are in 5.4.

19

constraint
diff-constraint

norm-constraint

zero-sourcea t - la rge1

smoo thsourcea t - l a rge r

purpose
To constrain the higher l? components that
are not well controlled due to the effect of
the centrifugal barrier in the Schrodinger
equation on the pair wavefunction.
To smooth fluctuations at large T , which
dominate the normalization integral.
To smooth oscillations in the source at
high r'caused by aliasing of statistical and
experimental noise in correlation.
Same as ze ro - sourcea t - l a rge i .

justification
S(r) is convolution of two well
behaved single particle emission
rates so T = 0 fm is a maximum.

Conservation of probability forces
source to be normalized to 1.
No pairs are created farther than
Irl = T,,, apart in the model.

S(r) should go to 0 smoothly as

Table 5.2: Explanation of the various equality constraints.

FT test

normalization

constraint

j=l
N M

4 x 1 d r r 2 - S(T) 2 0 c 4 7 r S j B j (4 2 0
O0 sin(2qr)

2qr j=1

4n Lrn dr r2S(r) 5 1 47rSj Lm dr ~ ~ B j (r) 5 1

d i f f -constraint

norm-constraint

zero-source-at-large1

smoothsource-at-larger

as
ar
- (r + 0) = 0

continuous representation I b-spline representation
I N M

03

47r 1 dr r2S(r) = X

Table 5.3: Equality constraints on the b-spline representation of spherically symmetric sources.

I constraint I continuous representation I b-spline representation
I I

Table 5.4: Inequality constraints on the b-spline representation of spherically symmetric sources.

20

Chapter 6

BUILDING KERNELS

This section focuses on building the kernels and how
to construct your own kernels. In general, making
a kernel file is simple using the pick-kernel shell
script:

% . /pick-kernel [PIDl [link]

Here, the [PID] option is actually the keyword to tell
pick-kernel which kernel to build. A table showing
the valid kernel keywords is shown in Table 6.1. The
[link] option tells pick-kernel where you would
like to symlink the created kernel.

The pick-kernel script is used by the two con-
trol scripts (imageit and createtest) to choose the
kernel. Since pick-kernel simply manages the pro-
duction of the kernels, the actual work is done by the
various genma* 1D codes. While using pick-kernel
and the underlying kernel generators is simple, one

1. Map keyword [PID] to kernel generator and
output data file. See Table 6.1.

2. Go to kernels/ directory in source tree.

3. See if the requested kernel is already done. If
so, skip step 4.

4. Build the kernel and save it as genma* . dat.
5. Make a symbolic link in from kernel

in kernels/ to the final destination,
[link] /kernel. dat.

6.2 Layout of kernel.dat and
genmaNIlD

should still know how they work, both to understand

to understand how to write One’’ Own

pairs we had not considered.

pick-kernel. Second, taking the non-interacting bo-

This section is a explains how the kernel. dat files

‘Ode for kernels or, perhaps, create your own kernel generator.
For non-interacting bosons, the final state relative

the pitfalls and limitations Of each type Of pair, and are layed so that you can troubleshoot existing

We now outline this section. First, we detail the wavefunction is simply a symmetrized plane wave:

iq.r/fic + e--iq.r/fic son kernel as an example, we explain the layout of the
kernel files. This should help you create your own ker-
nel. Next, we explain the proton-proton, IMF and
meson kernels. Finally, we explain how the kernels resulting in a rather trivial kernel: K(q,r) =
are loaded and used in imagelD. cos(2q.r/fic). It is easy to show that the angle av-

eraged kernel is therefore:

sin p

P
where p = 2qr/Fcc. (6.2)

Note, the kernel has no units. The simple FOR-
TRAN code that writes this kernel to genmaNIlD . dat
is listed in Fig. 6.1.

Although one may read the file format off this
FORTRAN code, it does not hurt to repeat it here.

6.1 The pick-kernel script
Ko(4,r) = -

If you ever make a new kernel, you should consider
modifying the pick-kernel script to automate the
use of you kernel. So, to aid in this, we now explain
briefely how the script works. You should also exam-
ine the source itself though.

Here is an outline of the script:

21

C

C

C

C

C

C

C

C

C
C

program genmaNIlD
implicit none
include ’constants.inc’ !fund. consts. (hbar, pi, etc . . .)
include ’particle.inc’ !particle masses & charges
include ’gridinfo1D.inc’ !define r & q grid here
real*8 Kmatrix(nsr)
real*8 r,qrel, rho
integer isq,isr

open kernel file and create header

write(*,*) ’Writing kernel to disk’
open(20,file=~genmaNI1D.dat~,status=~unknown~)
write(20,*) ’Generated by genmaNI1D’
write(20,*) ’21*22= 0’
write(20,*) ’reduced-mass= 0’
write(20,*) ’Nsq= ’,nsq
write(20,*) ’Nsr= ’,nsr
write(20,*) ’maximum-Lambda= 0 ’
write(20,*) ’--begin-table--’
write(20,*) ’ Lambda= 0’

find & output complete K-matrix

do isq=l,nsq !start big q loop
qrel=dble(isq)*dsq+qmin
write(*,’(IH+,I3)’)isq
do isr=l,nsr !start r loop

r=dble(isr)*dsr+rmin
rho=2.dO*qrel*r/hc
if (rho.lt.1.d-6) then

else

endif

Kmatrix(isr)=l.dO-rho*rho/6.d0

Kmatrix(isr)=sin(rho)/rho

enddo !end r loop
write (20, *) (Kmatrix (isr) , isr=l ,nsr)

enddo !end big q loop

output footer and close file

IMF's IMF

Table 6.1: The keyword to particle pair mapping used by pick-kernel.

Generated by genmaNIlD
Zl*Z2= 0
reduced-mass= 0
Nsq= 1001
Nsr= 201
maximum-Lambda= 0
-- begin-table--
Ko(q1,rd Ko(q1,r2) . . . KO (qNsq, rl)
Ko(qz,r1) Ko(q27r2) . . . KO(qNsq, r2)

Figure 6.2: Layout of the kernel file produced by genmaNIlD. f.

A schematic version of genmaNIlD . f is shown in Fig-
ure 6.2.

The grid itself is specified in gridinf olD . inc and
here are the equations for the grid points:

(6.3) qisq
risr

= dble(isq) * dsq + qmin,
= dble(isr) * dsr + rmin.

6.3 The rest of the kernels
In this section, we detail the rest of the kernels, com-
menting on some of the trickier aspects of the codes.

The radial wavefunctions g$ (T) are solutions of
the Schrodinger equation, including the Coulomb and
nuclear potentials (in this case, the REID93 soft-core
potential [26]). The integration of the wavefunction
is done with a simple leap-frog algorithm, starting
at very low T (<< 1 fm) out to absurdly large T

(z 200 fm). At this large T , we read off the final
normalization and phase of the radial wavefunctions
and then renormalize the wavefunctions. We do this
to repair any imperfect guessing of initial value of the
wavefunction or its derivative near the origin. We use
all P s in the sum below lmaz = qmazrmaz/hc.

6.3.1 genmaPPlD, for proton pairs 6.3.2 genmaIMFlD, for Intermediate
The proton kernel is given by the following sum over
partial waves:

Mass Fragments
In the case of Intermediate Mass Fragment correla-
tions, the kernel we use is' 1

Ko(q,r) = 2 c(2j + 1) (g i$ (r))2 - 1. (6.4)

The sums over spin s, total angular momentum j and
orbital angular momenta e and b' basically amount

Ko(q, T) = O(r - T,) (1 - rc /~)1 '2 - 1. (6.5)
j s e e f

Here, the reduced velocity is

t o an overall factor of for the singlet channel and a V
(6.6) (21 + 22)'/2 ' factor of 2 for the triplet channel. vred =

'Under the assumptions that the pair Coulomb correlation dominates the fragment correlation and that the fragments were
approximately isospin symmetric.

23

and the distance of closest approach in (6.5) for sym-
metric fragments is approximately

This is determined by the makefiles that build the
genmaPIlD and genmaKKlD executables.

e2
. (6-7) 6.4 Using the kernels M-

2 2 1 22 (AI + A2) e2
T c =

A1 A2 m N u2 m N u k

To get this kernel to function properly, it may
be necessary to play with the units of q in
yourf ile. controls.

6.3.3 genma-meson, for meson pairs
All like-meson kernels can be generated by the
genmameson code, provided that we may neglect the
nuclear force between the meson pair. For T and K
mesons, this seems to be a reasonable approximation.
Given this, the kernel for like mesons is

00

Ko(q, T) = (2 + l)-1Jge(T)12 - 1 . (6.8)
e=o, e ="en

Here, ge(T) is the radial wavefunction that we obtain
by solving the Klein-Gordon equation, including the
Coulomb force. The Coulomb force is included using
the minimal substitution prescription, so includes the
relativistic correction to the Coulomb force.

The genmameson code itself does not know about
the mass or charge of the mesons in question.

Because it may be useful change the representation
of the source in imagelD, we decided that it is better
if the genma*lD codes simply concentrate on build-
ing kernels, Ko(q,r). In order to keep the details of
the kernel separate from the imaging code, we have
provided a function called K f t n (1, q, r) to serve as
the generic program interface to the kernels. When
called, K-f tn (1, q, r) first decides how to evaluate
and return the value of Ke(q, T). If there is no kernel
on the disk, it uses its own copy of the non-interacting
boson kernel (also provided by genmaNIlD. f). On the
other hand, if there is a kernel on the disk it calls the
routine rawKspline. Currently this function resides
in the rawKspline . f file.

All of the kernel generators produce a table of
kernel values on the same grid in T and q defined
by Eq. (6.3) and specified in gridinfolD. inc. To
make use of this table, we have created a routine
called rawKspline which creates a 6th polynomial
interpolated approximation to the kernel saved on
disk. The rawKspline routine is also contained in
rawKspline. f.

'For the one dimensional problem here, f = 1 = 0.

24

Chapter 7

MAKING TEST CORRELATIONS

In this chapter, we discuss two methods for gener- c r e a t e t e s t in order t o simplify the process of run-
ating correlations for testing the imaging code and ning makcolD. The input files and the required exten-
kernels. The first code, makcolD, convolutes one of sions are listed in Table 7.1.
a variety Of Sample source functions with a kernel. To run makcolD using c r e a t e t e s t , invoke it in
In other words, makcolD performs the integration in
Eq. (l . l l) , which we repeat here:

the same manner invoke imageit:

00

R(q) = 47r 1 drr2Ko(q, r)S (r) . (7.1)

The other code is an extension of Scott Pratt’s CRAB
code [6] that we call sourcemaker. CRAB uses the
single particle sources that comprise S(T) to construct
the correlation directly via:

R(q) = 1 d47- KO(% 7.) x

1 d3R D (R + r/2, P/2)D(R - r/2, P/2) .

(7 4
To obtain the source, sourcemaker must then re-do
the integrals in Eqs. (1.5) and (1.6), which we com-
bine here:

S(r’) = drb d4R D(R + r /2 ,P/2)D(R - r / 2 , P / 2)

We will first explain how to invoke makcolD us-
ing the createtest script. Following this, we will
explain some of how makcolD works, in the event
that you wish to extend it. Finally, we give a brief
overview of sourcemaker and the other codes in the
CRAB-addons directory that are needed to use CRAB
and HBTprogs together.

(7-3)
J

7.1 Running makcolD
As with the other codes, makcolD requires spe-
cific input filenames, so we have provided a script

% . / c r e a t e t e s t [pref i x l [PIDl [scratchdir]

The script c r e a t e t e s t works in much the same way
that imageit works. First, it copies all the relevant
files to a scatch directory with names changed accord-
ing to Table 7.2. It then invokes makcolD. Finally,
the script copies all of the resulting files back to the
starting directory with the new names as listed in
Table 7.2.

Table 7.3 is a listing of all of the sources that
makco can use to generate correlation functions. In
all cases, the sources are all normalized to a parame-
ter called A.

7.2 How makcolD works

The program makcolD is very simple. It simply per-
forms the convolution in Eq. (1.11) using a user spec-
ified source and the kernel chosen by pick-kernel
and invoked through K-ftn. The convolve routine
averages the correlation over the qi bins in the input
data file yourf i l e . cor in . The r i n t e g r a l routine
performs the actual integral in Eq. (1.11). All inte-
grals are done using the Romberg integration scheme
(see [24]). For speed, the user specified source is
placed in a table and a simple cubic spline interpo-
lates this table of source values. After the correlation
is generated, makcolD simulates statitical noise using
the errors from the data in a correlation input file.

25

extension
.controls
. corin

.dimensions
. souin*

OutDut file extensions

file description
Main control file.
Correlation data.
FORTRAN include file that specifies various array sizes.
InDut source function for makcolD oDtion 100.

extension
. cormod

. cormodnoerr
. souin

Table 7.1: List of the file extensions used by the createtest script.

file description
Generated test correlation, with errors and statistical noise.
Generated test correlation, w/o errors and statistical noise.
The model source generated by makcolD.

Input Files
starting name I working name

yourfile.corin I corinput . dat

Output Files
working name I ending name
souinput. dat I yourfile.souin

Table 7.2: Mapping of starting filenames to working filenames and back to ending filenames in the createtest
script.

yourfile.dimensions
yourfile.controls
yourfile.souin

7.3 Adding to makcolD

dimensions1D.inc testcorr . dat yourfile.cormod
main.controls noerrcorr. dat yourf ile. cormodnerr
souinput. dat

Adding sources to makcolD is straightforward, pro-
vided you watch for a few things:

1. The source must be normalized to 1 (see

2. The source has units of fmP3.

3. Once you have included your source, add
a menu entry in the Getchoice and
Simplesource routines in makcolD.

Alternatetively, you could be lazy and just use the
“load source from disk” option from the makcolD
menu.

Eq. (1.7)).

7.4 CRAB and friends
As an alternative to makcolD . f , you might consider
using Scott Pratt’s CRAB code [6]. This code takes

the freeze-out points from a transport model and
computes the pair correlation function. The data
itself must be formatted according to the OSCAR
standard [29]. We have written sourcemaker to take
the same OSCAR formatted set of freeze-out points
and create a source function from them. This code
uses the procedure outlined in Ref. [9].

In addition to sourcemaker, we provide a few ad-
ditional files in the CRAB-addons directory. First,
CRAB provides a code called phasemaker to gen-
erate the freeze-out positions from a thermal Gaus-
sian single particle source, D(r , p). We have extended
this code to generate single particle sources with ex-
ponential halos. Second, in order to help CRAB
and HBTprogs coexist, we have provided a pre-
configured driver and binning. Finally, CRAB’S out-
put format differs from HBTprogs’s yourf ile . corin
file format so we wrote a converter code called
CRAB-converter.cpp.

26

1 Menu Item

Gaussian

Gaussian with

Sharp Sphere

Sqrt Thingee

Gaussian w/
cutoff

Hard Sphere
Freeze-out
Density

Shell Freeze-out
Density

I Exponential

Woods-Saxon

Delta Function

Dipole

Sum of Any Two
Shapes

Load from disk

Eauation of Source Function

1 15 r
2 47r5Rf exp (~ / R I) - 1

exp(-r2/4Ri) + -- 1 1
(5 (2 J ; ; R o)

1 Ro
2.rrRi r

X-B(Ro - T) -

1
47i Rz

X-6(r - Ro)

2 Ro
7r2 (r2 + 4Ri)2

x-

Notes

C is a normalization
constant determined by
the program

C is a normalization
constant determined by
the program

T h l S corresponds
to a freeze-out
phase-space density
f (r , p) 0; S(r - RoP)

T h l S corresponds
to a freeze-out
phase-space density
f(T,P) S(r - RoP)

c' is a normalization
constant determined by
the program

T h e user chooses which
shapes.

Needs souinput. d a t file
and code overwrites it
on exit.

Table 7.3: List of sources used by makco.

27

Chapter 8

FREQUENTLY ASKED QUESTIONS (FA&)

1. What happens if my correlation doesn’t
go to 1 at large q? You most likely will end
up with a source that is meaningless, namely
it oscillates wildly and is mostly negative (that
is, if it didn’t crash imagelD already). Unfor-
tunately, there are many reasons why your cor-
relation might not get to 1 at large q. The triv-
ial one, namely that the correlation is normal-
ized wrong, should be fixed before attempting to
image. However, various kinds of flow-induced
position-momentum correlations are known to
result in correlations that do not go to 1 [27].
This type of problem seems to be very common
in low energy proton-proton correlations.

2. My restored correlation or my model cor-
relation oscillates! This is most likely either
due to a bugfmisuse of the codes, but may also
be due to there being an edge in the source. See
[16] for some detail on this.

3. I’m using BSplineDegree=O and my 2nd
bin is really low! This can usually be fixed by
increasing BSplineDegree. This has the effect
of tying the first few bins together in a bigger
spline. You won’t loose resolution, but you will
squash many unphysical oscillations. As a side
benefit to going to higher degree Basis splines,
you will be able to use various equality con-
straints to stablise the image at low r.

4. My source tail oscillates wildly! You
may either have some tweaking to do or you
don’t have the resolution to resolve the source
at large r. The constraints that control the
large T behavior (zero-source-a t la rger and
smoothsource-at-largei) may help or you

may be forced to decrease the size of your imag-
ing region.

5. My source has a cusp at large r! This is
most likely an artifact of aliasing caused by the
statistical noise in the correlation. You can ei-
ther choose to ignore it or squash it with the
two constraints that control the large T behav-
ior of the source (zero-source-at-larger and
smooth-sourceat - l a r g e r) .

6. My source has a cusp at low r! You can
fix this easily by adding the d i f f -cons t ra in t
constraint. Of course, one must be careful1 be-
cause you may indeed have sharp structure in
your source and may not be able to resolve it
once the constraint is turned on.

7. My head has a cusp! Sorry, I can’t help you
there.

8. Can I have variable sized bins in my data?
Yes, reread section 4.2.

9. How can I get the integral of the
source? It is already automatically computed
by imagelD. You can control the upper limit of
integration with the option up-int-lim in your
main controls file.

10. What are some of the issues with CERN-
LIB? When the project was started, using
CERNLIB made a lot of sense: it was free,
easy to use, and had most of the functions we
needed for the code. In particular, it has the
NORBAS Basis spline package and minuit. Un-
fortunately, over time, CERNLIB went from
useful package to crutch:

28

(a) minuit is flaky on linux. Even on the
Compaq alpha’s minuit has been known
to freeze when searching for optimal knots.
Incidentally, when this happens, changing
up-fit-lim a little bit usually fixes the
problem.

(b) overuse and misuse of common block cause
trouble when parallelizing the code

(c) archaic and often obsolete FORTRAN

(d) CERN is no longer supporting it

We are working to remove all need to link to this
code by replicating CERNLIB functionality in
the l i bp lay . a library in the l i b / directory.

11. How can I pick good knots? Read the sec-
tion 5.1, or better yet, read Refs. [3, 211.

12. Why don’t my Gaussian fit and my
source look the same? There are many rea-
sons, but the obvious one is that your source
isn’t Gaussian! Of course, if you are using
makcolD and you pu t in a Gaussian, then most
likely there is either an error in your input files
or you have some tweaking to do. It is also
possible that, given the binning of you data,
that you really can’t resolve part (or all) of your
source. If this is the case, consider refining the

binning of the correlation model you have. On
the other hand, if you are modeling real data
and you really can’t change the binning of the
correlation, it may be that a Gaussian fit is all
you can really do.

13. Will there be other representations of the
source in the code in the future? Proba-
bly not. We are considering a full rewrite in
c++ which would allow for this, but we are not
planning to add this feature to this FORTRAN
code.

14. How can I make a kernel when I don’t
know the potential? Most likely, you are in
trouble. Sometimes though, if you know the
scattering length and or a few phaseshifts, you
can work out the wavefunction and/or poten-
tial. See refs. [18, 261 for a starting point.

15. Why don’t you use inequality constraints
in the inversion? We’d like to. An old version
of this code actually did support it, but the er-
ror estimation and propagation in the code was
suspect so this feature was removed. To put it
back in, we need to do a lot of reading about
“Active set methods.” If you really want it, you
could figure it out and we’ll be happy to put it
in ...

29

Chapter 9

CONCLUSIONS

If you have comments, suggestions for improvements,
or bug fixes (or even better, software patches!) do
not hesitate to contact one of the authors. In fact,
we encourage it. Currently there are several areas of
the code that could use substantial enhancement:

1. A bigger selection of kernels

2. Simpler user interface (porting FORTRAN 90
would allow use to dynamic memory and hence
remove the include files specifying the array di-
mensions)

3. Use of inequality constraints

4. Use of the full data covariance matrix

The TODO list in Appendix C has a more complete
list.

Acknowledgements
This work was performed under the auspices of the
U S . Department of Energy by University of Califor-
nia, Lawrence Livermore National Laboratory under
Contract W-7405-Eng-48. This work was also per-
formed under the National Science Foundation Grant
NSF-

30

Appendix A

FILE MANIFEST

A . l Main Files
1. Directories:

HBTmanual. tex: this manual.

HBTmanual . ps: this manual in postscript for-
mat.

conf ig/: configuration files

doc/ : the document ation

doc/example/: a simple pp example

doc/plot -templates/: xmgr ace plot template
include/: FORTRAN include files

kernels/: any pre-built kernels

lib/:

sbin/: the scripts get installed here interacting spin-0 bosons

src/ld/: main source codes

sr c / kerne lgener at or s / : kernel

emission. eps: a figure in the manual.

bsplines . eps: another figure in the manual.

example-plots . eps: yet another figure in the
manual.

3. Kernel generators:

genmaIMFlD . f : IMF kernel generator

genmaNI ID. f : kernel generator for non-

genmaPPlD . f : proton kernel generator

genmameson.f: combined 1D and 3D meson

files to make the shared library

generator
source codes kernel generator

src/scripts/: unprocessed scripts

src/CRAB-addons/: extra codes for use with
CRAB

2. Documentation:

CHANGELOG: log of major changes with each ver-
sion

README: read this first

RELEASE: release version

TODO: to do list

COPYING: notes on copying and distributing the

NEWS:
codes

no news is good news ...

4. Other Programs:

imagelD . f : the imaging code

makcolD. f : code to generate test correlations

fitsource1D.f: code to fit Gaussians to im-
aged sources

optreslD. f: undocumented feature

share1D.f: code shared by several of the 1D

viewsourcelD. f: for viewing the source, with-

mtx2xpm. cpp: gizmo to make a grey-scale

codes

out inverting again

pixmap of a matrix

5. Scripts: AUTHORS: list of the authors

INSTALL: autoconf -generated installation in- configure: main configuration script gener-
structions ated by autoconf

31

conf i g . s t a t u s : configuration script used by

c r e a t e t e s t : script for using makcolD
pick-kernel: script for building and using the

imageit: script for using imagelD

3. Outputted Source:
configure

example-pp . imag: sample restored source from

example-pp. knots: knots that define the b-

example-pp. coef f s: coefficients of the b-

example-pp. corin.

spline. kernels

6. Misc. Files: spline expansion.

Makef i l e . in : template Makef i l e (used by
configure)

configure. in: template configure file for use
with autoconf

configure: script to generate Makef i les for
different machines (generated by
au t oconf

example-pp. covmtx: covarience matrix of the

example-pp . restored: restored correlation

example-pp. bestf i t : results of a Gaussian fit

example-pp. optres: output of an obscure, un-

coefficients

(compare to example-pp. corin).

to the source image.

documented feature.
7. Include Files:

4. Logs:
imf s . inc: particle properties for the IMF ker-

kaons. inc: particle properties for the kaon example-pp. knotlog: log of minuit’s knot-

pions. inc: particle properties for the pion ker-

ne1

kernel finding adventures.

nel

example-pp . runlog: output of imageit.

example-pp.f i t l o g : output of f itit.

protons. inc: particle properties for the pro- A 3 . CRAB addons
ton kernel

constants . inc: constants of the universe. Un- 1. Documentation:
less you have warp capabilities, don’t
mess with these.

gridinfolD. inc: size of grid used in 1D ker-
nels 2. Main Files:

README-CRAB-addons: what passes for docu-
mentation for this set of codes

A.2 The example files
1. Control/Include Files:

crabHBTprogs . cpp: drop in replacement for

crab-bindef sHBTprogs . cpp: drop in replace-
ment for a CRAB binning file

crab. C

example-pp. controls : main control file
example-pp. bspline: include file that sets the

b-spline order
example-pp .dimensions: include file that sets

the dimensions of the image model
space and the data space

3. Utility Codes:

crab-converter . cpp: converts CRAB output to
a corinput . dat-like formatted corre-
lation

4. Phasemaker:

2. Input Data: phasemaker. cpp: modified version of Scott
Pratt’s code - this version generates
Gaussian sources with exponential ha-
10s

example-.souin: sample input source. It is a

example-pp . corin: sample correlation using
Gaussian with Ro = 4 fm.

example-. souin. 5. Sourcemaker:

32

sourcemaker. cpp: code to generate source threevectors . hpp: simple three-vector class
functions from an OSCAR formatted
particle freeze-out distribution f ourvectors . hpp: simple four-vector class

randf uncs . hpp: code to generate random fv- tes te r . cpp: tester code for the three and
numbers with various distributions four vector classes

33

Appendix B

CHANGELOG

CHANGELOG file
last updated 18 Jan 2002

lversion 1.01

Overall :

1) new autoconf/automake configuration and build scheme
2) new control scripts (hopefully more rational and more portable)
3) new directory structure
4) removed 3d codes. save those for version 2.0
5) finished documentation

+-----------+

+-----------+--

- - - - - - - -

makeco1D.f:

1) fixed option 100 (load from disk)
2) fixed case when data has un-equally spaced bins

genmaPP1D.f:

fixed Coulomb bug introduced sometime in last few months

rawKsp1ine.f:

I) unified all kernel loaders in one routine
2) unified all kernel functions in one routine
3) switched to higher order polynomial for interpolating kernel table
4) added meta-data to kernel files

---_---------

34

+--------------+

lversion 0.09.31

In imagelD:

errors were computed incorrectly -- it is now fixed and the errors on
S(r), integral of S(r), and restored correlation are much smaller now.

+--------------+---

In lib/:

random number generator changed so that it generates a different sequence
of random numbers each time it is called

- - - - - - - -

1) renamed them from genmaXX -> genmaXXlD because there are also
genmaXX3D kernels in the works. The genma-mes0n.f code seems
to be an exception to the naming scheme. Well, it is capable
of producing 1D *and* 3D kernels for any mesons (you have to
change particle.inc however)
2) the format for saving the kernel is different.
formatted and it specifically is:

NSQ NSR
K-O(l,l) K-0(1,2) K-0(1,3).. . .
K-0(2,1) . . .

now the format is

1=0
K-l(l,l) K-1(1,2)

1= 1

here, NSR and NSq are the number of steps in the r and q directions.
K-1 is the lth componant of the kernel (expanded in legendre polynomials
for 3D work).
3) there are alot more bins in r and q.
now, you don’t have to rebuild the kernel each time you change the binning
in q
4) no longer used interpolation to speed up the potentials. since the
kernel doesn’t have to be remade so often, it can take longer to build

also, the way i have it rigged

In makco:

1) makco has more choices
2) more accurate because kernel better

- - - - - - - - -

35

In the imagelD:

1) b-splines
2) equality constraints
3) checks inequality constraints
4) optimized knots found using faster/better minimization routine
5) can output the optimal resolution matrix (some day i’ll have to explain
what this is)

Other stuff:

I) is a 3D version of imagelD (it was in the first version of the new code
i put on the web, but i took it out of the last one as it’s not really
done testing yet)
2) viewsourceXD codes, so you can remake the images if you only have the
coefficients and knots.
3) mtx2xpm, a little c++ code to make any of the matrices made by the
codes into a grey-scale pixmaps
4) fitsourcelD, a little code that fits gaussians to imaged sources and a
script fitit to automate the process
5) genmaDAlD and smearker (thanks Giuseppe!)

Overall :

1) centralized controls whereever possible (e.g. main.controls)
2) fewer include files to change and they are named more intelligently.
3) using CERNLIB whereever possible (it’s reasonably fast and available
everywhere)
4) runs on more platforms: wrote it on Linux (egs f77) and on OSF (dec
f ortran)
5) scripts for automating some boring things and for giving more
reasonable filenames to things

- - - - - - - -

I version 0.03 I

1) added option of inputing source from disk into makc0.f

2) simplified Makef ile
3) fixed linking bug in installib.com (thanks to Dennis Reichhold 4/7/99)

+------------+---

(this allows you to build model sources using other programs like RqMD)

I version 0.02 I
+------------+---

1) minor bug on some systems in lib/simplx.f
2) minor fixes in makefile that allow programs to run under Linux
3) added Woods-Saxon like source to makc0.f
4) added realistic noise to sources from makc0.f
5) fixed bug that made standard deviation of noise in randomnoise sqrt(2)

36

http://installib.com

37

Appendix C

To Do LIST

1. Merge 3D codes

2. Merge Giuseppe’s deutron-alpha kernel

3. Merge Giuseppe’s smearker

4. Clean up interface

5. Option to fix first knots (as in old code), option to let *all* knots float

6. Get opt. knots in 3D code (possibly use 1D code for this)

7. Tweak opt. knot routines in ID, also maybe abstract them so can use in 3D

8. More metadata in kernel. dat and kmtx. dat files

9. Fix norm constraints

10. Merge knotlist and source-coeff

11. Generic kernel generator

12. Frame dependence of 3D analysis

13. Quality checks of outputted covariance matrix (is it symmetric and positive definite?)

14. Remove dependence on CERNLIB

38

Bibliography

[I] David A. Brown and Pawel Danielewicz. “Imaging of sources in heavy-ion reactions.” Phys. Lett. B
398: 252-258 (1997).

[2] David A. Brown and Pawel Danielewicz. “Optimized discretization of sources imaged in heavy-ion
reactions.” Phys. Rev. C 57: 2474-2483 (1998).

[3] David A. Brown and Pawel Danielewicz. “Observing non-Gaussian sources in heavy-ion reactions.”
Phys. Rev. (764: 014902 (2000).

[4] S. E. Koonin. “Proton pictures of high-energy nuclear collisions.” Phys. Lett. B 70: 43-47 (1977).

[5] S. Pratt, T. Csorgo, and J. ZimBnyi. “Detailed predictions for two-pion correlations in ultrarelativistic
heavy-ion collisions.” Phys. Rev. C 42: 2646-2652 (1990).

[6] CRAB source code. http : //www .nscl .msu. edu/-pratt/f reecodes/crab/.

[7] H. Barz. “Effects of nuclear coulomb field on two meson correlations.” Phys Rev. C 53: 2536 (1996).

[8] L. Martin, C.K. Gelbke, D. Erazmus, and R. Lednicky. “Influence of the emitter coulomb field on two
proton correlation function.” NucZ. Phys. A 604: 69 (1996).

[9] S. Y. Panitkin and D. A. Brown. “Imaging proton sources with space-momentum correlations.” Phys.
Rev. C61: 021901 (2000).

[lo] S. Pratt. “Pion lasers from high-energy collisions.” Phys. Lett. B 301: 159 (1993).

[ll] S. Pratt. “Deciphering the centaur0 puzzle.” Phys. Rev. C 50:469 (1994).

[12] S. Pratt. Physics of the Quark-gluon Plosma, ed. R. Hwa, World Scientific, Singapore (1996).

[13] Q.Q. Chao, C.S. Gaol Q.H. Zhang. J . Phys. G 21: 847 (1995).

[14] Pawel Danielewicz and Peter Schuck. “Formulation of particle correlation and cluster production in
heavy-ion-induced reactions.” Phys. Lett. B, 274:268-274 (1992).

[151 S. Pratt. “Validity of the smoothness assumption for calculating two-boson correlations in high-energy
collisions.” Phys Rev. C 56: 1095-1098 (1997).

[16] D. A. Brown, F. Wang and P. Danielewicz. “Implications of the unusual structure in the pp correlation
from Pb+Pb collisions at 158 AGeV.” Phys. Lett. B 470, 33 (1999).

[17] S. Pratt. “Coherence and Coulomb Effects on Pion Interferometry.” Phys. Rev. D 33: 72-79 (1986).

[18] D. Boal, C.K. Gelbke, and B. Jennings. “Intensity interferometry in subatomic physics.” Rev. Mod.
Phys. 62: 553-602 (1990).

39

[19] U. Heinz and B. Jacak. “TWO particle correlations in relativistic heavy-ion collisions.” Ann. Rev. Nucl.
Part. Sci. 49: 529-579 (1999).

[20] U.A. Wiedemann and U. Heinz. “Particle interferometry for relativistic heavy-ion collisions.” Phys.
Rep. 319: 145-230 (1999).

[all C. de Boor. A Practical Guide to Splines, Springer-Verlag, (1978); MRC 2952 (1986) in Fundemental
Developments of Computer-Aided Geometric Modeling, L. Piegl (ed.), Academic Press, (1993).

[22] CERN Program Library. http: //wwwinf 0. cern. ch/asd/cernlib/.

[23] A. N. Tikhonov. “Solution of incorrectly formulated problems and the regularization method.” Sou.
Math. DOH. 4:1035-1038 (1963).

[24] W.H. Press et al. Numerical Recipes: The Art of Scientific Computation. Cambridge University Press,
Cambridge (1992).

[25] A.Tarantola. Inverse Problem Theory. Elsevier, Amsterdam (1987).

[26] V. G. J. Stoks et al. “Construction of high quality nucleon nucleon potential models.” Phys. Rev. C
49: 2950-2962 (1994).

[27] T. Trainor and J.G. Reid. “Space-time autocorrelations and Hubble flow: probing small length scales
in heavy ion collisions.” e-Print Archive: hep-ph/0004258.

[28] A. Messiah. Quantum Mechanics, Dover Pub., Mineola, NY USA (1999).

[29] OSCAR Standard Codes and Routines. http: //www-cunuke . phys . Columbia. edu/OSCAR/

40

This is the README file for a set of programs
that we developed to invert angle averaged
correlation functions. You are free to use and
modify the codes, we only ask that you reference
either the manual or references [1,2,3] in any
publications using results obtained with these
codes. We are not responsible for any misuse
of these codes. If you have any questions,
comments, suggestions or bug fixes regarding
the programs or the documentation, please
contact David Brown at brownl70@llnl.gov or
Pawel Danielewicz at danielewicz@nscl.msu.edu.

1) unpack the tarball:
% gunzip HBTprogs.tar.gz
% tar xf HBTprogs-tar

% ./configure

% make install-data

2) run configure:

2) do a make install-data:

3) read the manual in doc/
4) rerun the example in doc/example/

+--- +
IF YOU HAVE PROBLEMS

If you have problems, there are two immediate
sources of information:
1) The INSTALL file which discribes the various

2) The manual doc/HBTmanual.ps
options of the configure script

If this doesn't help, contact David Brown. His
contact information is listed in the AUTHORS
file.

mailto:brownl70@llnl.gov
mailto:danielewicz@nscl.msu.edu

[l] David A. Brown and Pawel Danielewicz.
Imaging of sources in heavy-ion reactions.
Phys. Lett. B, 398:252--258, 1997.

[2] David A. Brown and Pawel Danielewicz.
Optimized discretization of sources imaged
in heavy-ion reactions.
Phys. Rev. C, 57 (5) :2474--2483, May 1998.

[3] David A. Brown and Pawel Danielewicz.
Observing non-Gaussian sources in heavy-ion reactions.
Phys. Rev. C 64: 014902 (2000).

	1 INTRODUCTION
	1.1 BasicTheory
	1.1.1 The Koonin-Pratt Equation
	1.1.2 The Source Function
	1.1.3 Recasting the Problem in Id
	1.1.4 Limitations of the Formalism

	1.2 Inverting the Koonin-Pratt Equation
	1.2.1 Recasting the Equation
	1.2.2 A Least-squares Solution
	1.2.3 Fourier Theory Considerations
	1.2.4 Representing the Source
	1.2.5 Optimal Knots for the B-splines
	1.2.6 Constraints

	2 GETTING STARTED
	2.1 Obtaining the Source Code
	2.2 System Requirements
	2.3 Installation

	3 AN EXAMPLE RUN
	4 PREPARING INPUT FILES
	4.1 Filename conventions
	4.2 Correlation data file format
	4.2.1 3 Column Format
	4.2.2 4 Column Format
	4.2.3 Units of relative momentum

	4.3 Editable include files
	4.4 Main control file

	5 IMAGING THE SOURCE
	5.1 Choosing the knots
	5.1.1 General comments about knots
	5.1.2 Box-splines
	5.1.3 Specific knotmode™s

	5.2 Equality Constraints
	5.3 Inequality Constraints
	6.1 The pick-kernel script
	6.2 Layout of kernel dat and genmaNIiD
	6.3 The rest of the kernels
	6.3.1 genmaPPiD for proton pairs
	6.3.2 genmaIMFiD for Intermediate Mass Fragments
	6.3.3 genmameson for meson pairs

	6.4 Using the kernels

	7 MAKING TEST CORRELATIONS
	7.1 Running makcolD
	7.2 How makcolD works
	7.3 Adding to makcoiD
	7.4 CRAB and friends

	8 FREQUENTLY ASKED QUESTIONS (FAQ)
	9 CONCLUSIONS
	A FILE MANIFEST
	A.l MainFiles
	A.2 The example files
	A.3 CRAB addons

	B CHANGELOG
	C To Do LIST

